
BugLink Documentation
Release 0.9

Benoit Allard

Sep 27, 2017

Contents

1 QuickStart 3
1.1 Setup . 3
1.2 Support call arrives . 3
1.3 Issue get worked at . 3
1.4 Issue get tested . 4
1.5 New release is made . 4

2 Installation 7
2.1 Client-side extension . 7
2.2 Server-side extension . 7
2.3 Web Interface . 8

3 Mercurial Extension 11
3.1 Client side . 11
3.2 Server side . 12

4 Web interface 15
4.1 Introduction . 15
4.2 Dependencies . 15

5 Frequently Asked Questions 17
5.1 Why not using the commit message ? . 17
5.2 Do I need the server-side stuff ? . 17
5.3 Why not storing the bug state ? . 17
5.4 How do I import all my issues as a batch ? . 18

6 For Developpers 19
6.1 Write tests . 19
6.2 Unit-tests . 20
6.3 Flask-tests . 20
6.4 Upgrade the DB Schema . 20

7 ToDo List 21

i

ii

BugLink Documentation, Release 0.9

BugLink is a Mercurial extension that helps link changesets with Issue IDs.

The final goal is to be able to ask the list of issue being tackled between two changesets.

BugLink is composed of three components:

• client-side extension

• server-side extension

• web interface

The typical workflow is as follow:

1. A developper is working on an issue on his computer where the client-side extension is enabled, during devel-
opement, he indicates the issue ID he is working on.

2. The developper reached a milestone and decides to push his progress to the server. During the push operation,
the information about the issue(s) being worked-on is transfered to the server.

3. The server upon reception of the information updates the database with the changesets and their corresponding
issue ID.

4. Management heard some progress have been made toward the next release, they point their web-browser to the
local web shop, and smile as they see that three more issues have been worked at since the last time they looked
at it.

Fig. 1: BugLink workflow
The developpers push to the server which updates the database, and management access the database through a web interface

Contents 1

http://selenic.com/mercurial

BugLink Documentation, Release 0.9

2 Contents

CHAPTER 1

QuickStart

Setup

Alice is the developer of the company.

Bob cares of the support calls.

Carol watch over the quality of the product.

Dave is the manager.

Support call arrives

Bob, receive a phone call from an polite customer not happy about the greenish colour of the main button, and asks if
it could be red.

Bob tries to reproduce the issue, realizes that the red button would better fit in the design of the product, and opens
issue256 in the company’s ticketing system, which cares of triggering Alice.

Issue get worked at

Alice receive a mail notifying her about issue256, reads it carrefully, and begins coding.

Once done, Alice indicates to Mercurial that the commit just done belongs to issue256:

$ hg commit -m "Make the button red"
$ hg link tip issue256
Associating 42685d8fcc0f with issue256
$

Alice checks the local associations out of curiosity:

3

BugLink Documentation, Release 0.9

$ hg links
issue256
$

That done, Alice push her modification to the server:

$ hg push https://hg.company.com/
pushing to https://hg.company.com/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files
Remote accepted 1 links.
Those will be removed from the local storage
$

Issue get tested

Alice then release a test build for Carol, and set the status of issue256 to test.

Carol get notified from the ticketing system that issue256 waits for her approval and test it, satisfied from the red
button, she set the issue status to resolved, and notifies Dave that a new issue has been solved, and that it might be
time to cut a new release.

New release is made

Carol and Dave together anayse the list of solved issue since the last release by requesting it to the local web server:

4 Chapter 1. QuickStart

BugLink Documentation, Release 0.9

In this case, Carol knows well this issue has been solved, but she can check it again with the ticketing system, and
then Dave can make the decision to release a new version.

1.5. New release is made 5

BugLink Documentation, Release 0.9

6 Chapter 1. QuickStart

CHAPTER 2

Installation

Client-side extension

This is the most common setup for this extension, being enabled on the client-side at the developer desk to allow him
to indicate alongside with his changeset on which issue he is busy.

This is nothing fancier than enabling a general mercurial extension. No weird dependencies are needed, as the comu-
nication with the database is done from the server-side.

After cloning the BugLink repository, the following lines have to be added to your user specific mercurial configuration
file (Mercurial.ini on windows or .hgrc):

[extensions]
buglink = path/to/buglink/client/

Server-side extension

This one has to be enabled on each repository that may receive changesets from developpers. This extension will care
about updating the database with the issue ID the developpers have been busy with. This can be a server-wide setting,
a repository specific setting, or a setting reserved for the web instance of mercurial (hgweb.conf for instance).

This extension needs to talk to the database, and thus has dependency on SQLAlchemy.

As any other mercurial extensions, it is enabled through modification of the mercurial configuration file
(Mercurial.ini on windows or .hgrc), where the following lines have to be added:

[extensions]
buglink_srv = path/to/buglink/server/

The location of the database has to be configured in the same configuration file. This has to be a sqlalchemy database
url. For instance:

7

http://mercurial.selenic.com/wiki/UsingExtensions
http://www.selenic.com/mercurial/hgrc.5.html
http://www.selenic.com/mercurial/hgrc.5.html
http://sqlalchemy.org
http://www.selenic.com/mercurial/hgrc.5.html

BugLink Documentation, Release 0.9

[buglink]
db_uri = sqlite:////tmp/dblink.db

Web Interface

We are talking here about a WSGI application. there are plenty of guide on the internet on how to attach a WSGI
application to your favorite web server. It looks like the last trendy one is to have a Gunicorn instance behind a nginx
proxy. Apache and mod_wsgi also works fine.

The web interface has a bit more dependencies as the rest, as it needs to talk to the database, and deliver content for
a web browser. The needed dependencies can be found in srv-requirements.txt. This file follows the pip
requirements file format. So that within your virtualenv you just need to run:

pip -r srv-requirements.txt

The web app is located in the following file:

server/web.py

Flask having its own integrated web server, it can be tested as follow (the optional parameter is the name of the
configuration file):

python server/web.py [config.yaml]

A sample WSGI script is given in server/buglink.wsgi. This file is reproduced here:

Configuration

The web server is configured through the usage of a configuration dictionary. This one can be given in the WSGI script
or through a config file in the YAML format.

the following configuration values are understood:

DB_URL This is the url to the database in the sqlalchemy format. For instance:

sqlite:////var/buglink/buglink.db

SECRET_KEY This is a random string used to encrypt the cookies used by the web application.

links This configuration key is used to configure cross links between buglink and other web instances (for instance
the mercurial server, or the bug tracker.)

The links key support the following sub-keys:

repository This is used to link a repository name to a web page, usually, the mercurial server.

changeset This configuration key is used to link a changeset to a web-page usually on the mercurial server.

issue This is used to link an issue to a web page (the bug tracker for instance).

All the sub-keys follow the same format. They are a list of settings, each setting can have three sub-keys: re,
default and url. At least the url sub-key should be filled to generate a link.

The following mechanism is used for each setting of each sub-keys in the order they are defined, later values
being only used if the previous one did not matched:

8 Chapter 2. Installation

http://www.wsgi.org
http://gunicorn.org/
http://nginx.org/en/
http://www.pip-installer.org/en/latest/requirement-format.html
http://www.pip-installer.org/en/latest/requirement-format.html
http://www.yaml.org/

BugLink Documentation, Release 0.9

1. The value (repository path, changeset hash, or issue reference) is matched against the content of the re
value.

2. If the regular expression matches, we go on to the next step, else the next setting is tried.

3. A dictionary is created with each matched variable of the regular expression (in the form (?P<id>...
)). Optional variables get their values from the default setting. This setting is a dictionary associating
variable name to default-values.

4. The url is generated from the content of the url setting, by replacing each format string (in the form
%(name)s) with its matched value during the regular expression matching.

As an example, tortoisehg, a project stored on Bitbucket.org should use the following setting:

links:
repository:

-
url: https://bitbucket.org/tortoisehg/%(path)s/overview

changeset:
-

url: https://bitbucket.org/tortoisehg/%(path)s/changeset/%(hash)s
issue:

-
re: #(?P<id>\d+)
url: https://bitbucket.org/tortoisehg/%(path)s/issue/%(id)s

2.3. Web Interface 9

BugLink Documentation, Release 0.9

10 Chapter 2. Installation

CHAPTER 3

Mercurial Extension

Client side

Action upon push

All known links are also pushed to the remote repository. If the operation succeeded, the extension can assume its
links made it to the database.

Added commands

Those commands acts on the local issue cache. This one will be transfered to the remote side upon push. the local
cache can also be augmented from a remote side if two developpers having the client-side extension enabled push/pull
to each other. In such a case, the issues referenced on one side will be duplicated on the other side. And the first one
to push to a repository with the server-side extension will publish the full list to the database.

link

This command link a changeset with an issue ID.

REVSET
This indicate the revisions on which the operation should be done.

ISSUE_ID
This is the name of the issue to be associated.

--remove
This tell Mercurial not to add a new correspondance, but to remove the one

Note: Only one of --remove or ISSUE_ID should be given at the same time. See hg unlink to remove a issue
from the local cache.

11

BugLink Documentation, Release 0.9

unlink

This command, well, unlink a (or multiple) issue. The result will be that the unlinked issue will not be referenced any
more in the local cache.

ISSUE_ID
This is the reference to the issue to be unlinked

links

This command takes two revisions as parameters (defaulting to -1 and tip) and output the issues that have been
worked on between them.

--revisions
This option output the revisions where the issues have been worked on together with the issue ID itself.

Todo

Add a --graph option

Aded options

hg commit

--issueid
To specify an issue ID for the to-be-commited changeset.

hg push

--issueid
To specify an issue ID for the to-be-pushed changesets.

Server side

Warning: Due to dependencies on (among others) sqlalchemy, this extension cannot works on Windows with a
packaged version of Mercurial. Those one having only access to the pre-packaged dependencies.

The server-side extension will mostly reacts on push from a developer and update the database with the pushed infor-
mation.

Action upon pushkey

Upon a push, initiated from the client-side, a set of changeset will be transmitted from the client side. A client also
using the buglink extension will also try to push all its known issue IDs. This will be pushed using mercurial pushkey
protocol.

The extension will be pushed a set of key from the client. Each key correspond to a changeset, and the corresponding
value is a free string indicating the corresponding issue ID.

12 Chapter 3. Mercurial Extension

BugLink Documentation, Release 0.9

For each received key, the server will optionaly parse the free string, and update the database about the link between
the changeset and the issueID.

For each pushed changeset, a new entry will be made in the database with the corresponding repository and the
parent(s) revision(s).

Added commands

createdb

This will initialise an empty database to the last schema version.

updatedb

This will update an old database schema so that the updated server-side extension can continue to work on the same
database. This operation is safe to run multiple time. If the database is up-to-date, this operation will simply do
nothing.

It is also possible to downgrade the database to an previous schema version (For instance if stuck by a show-stopper
bug in the last version). No command is provided for this operation, but the right mechanism is included as part of the
sqlalchemy-migrate versionning.

Configuration

This extension can be configured through the mercurial config file.

The following configuration values have effects:

buglink.db_url (default to sqlite:///dblink.db) This is a SQLAlchemy database url to the database
which should receive the issue links.

buglink.strip (also notify.strip, or 3) This is the number of directory to be stripped to the base of the
repository path for reference into the database.

3.2. Server side 13

BugLink Documentation, Release 0.9

14 Chapter 3. Mercurial Extension

CHAPTER 4

Web interface

Introduction

While the mercurial interface provide an append only interface to the database, the web one provides a read and modify
interface to it.

Dependencies

GraphViz needs to be installed on the server and dot be in the PATH.

15

http://www.graphviz.org/

BugLink Documentation, Release 0.9

16 Chapter 4. Web interface

CHAPTER 5

Frequently Asked Questions

Why not using the commit message ?

Commit messages in mercurial are written once in a changeset and cannot be changed again without altering the whole
history based their corresponding changeset.

Humans are not errors-prone, and it (sometimes) happen that someone forget to indicate which issue ID correspond to
the changeset he just committed, or even enter a wrong ID, (you know, just interverting two numbers : 2658 and 2568
...). As those errors cannot be easily corrected if stored in the commit message, we prefer to store this information at
another place. This way, it is still possible to change the issue ID referenced by a changeset commited three years ago.

Do I need the server-side stuff ?

If you don’t care about the web interface, you can only enable the extension on your computer and use the locally
stored links between changeset and issue ID as a reference. the command hg links can be used for this purpose.

Todo

Add a graph view on the command line

Why not storing the bug state ?

That’s the job of the bug tracker, we’re only here to make the missing link between him and changesets. Furthermore,
developers (for who this tools is written) don’t know if the bug has indeed been fixed until Q&A validates it.

17

BugLink Documentation, Release 0.9

How do I import all my issues as a batch ?

Say, like Mercurial, you used to store your issue number in your commit message. You can import them as follow (Or
if you don’t understand it, give it to your system administrator):

for i in `hg log --template '{rev}\n'`; do ref=`hg log -r $i --template '{desc}\n' |
→˓perl -ne 's/.*(issue\d+).*/$1/ && print'`; if ! [-z "$ref"]; then echo $i $ref >>
→˓issuelist;fi; done;

And then import the generated list via the hg debugimportlink command:

hg debugimportlink issuelist

18 Chapter 5. Frequently Asked Questions

http://selenic.com/hg/

CHAPTER 6

For Developpers

Write tests

Client-side extension

The client-side extension uses Mercurial’s own test framework to be tested. This means that mercurial has to be present
as a source package for tests to be run.

The recommended setup is to clone mercurial repository next to the buglink one.

Then To run the tests, simply run:

$ make tests

within the buglink root directory (probably buglink). If you added some, and want to update the corresponding
output, call the tests as follow:

$ make tests TESTFLAGS=-i

This way, you will be asked if the given output match your expectations, and if you want to include it in the test-case.

Server-side extension

Database migration

database migration, using sqlalchemy-migrate can be tested with their own tools, just run:

migrate test sqlite:////path/to/db .

in the server/dbmigrate directory. (Don’t forget to run it only on test-databases).

19

http://code.google.com/p/sqlalchemy-migrate/

BugLink Documentation, Release 0.9

Mercurial hook

Todo

Write tests

Web Server

Unit-tests

Some parts of the web-server can be independently tested. In those cases, write teste into the tests/server
directory.

To run those tests use the following command line in the buglink directory:

$ PYTHONPATH=. python tests/server/runtests.py

Flask-tests

Todo

Write flask tests as described under http://flask.pocoo.org/docs/testing/.

Upgrade the DB Schema

The DB is versionned, which means that each upgrade should follow a specific procedure. This one is described there.

1. Write a new script under server/dbmigrate/versions

2. Test the upgrade procedure with sqlalchemy-migrate

3. Upgrade the DB model version and (maybe) dscription in server/models.py.

4. Optionnaly integrate your change in the view.

A tentative is made to keep the schema decribed in the following figure:

Fig. 6.1: Database schema version 5

20 Chapter 6. For Developpers

http://flask.pocoo.org/docs/testing/
http://code.google.com/p/sqlalchemy-migrate/

CHAPTER 7

ToDo List

Note: This list is autogenerated from the doc itself.

Todo

Write tests

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/dev.rst,
line 47.)

Todo

Write flask tests as described under http://flask.pocoo.org/docs/testing/.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/dev.rst,
line 66.)

Todo

Add a graph view on the command line

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/faq.rst,
line 30.)

Todo

Add a --graph option

21

http://flask.pocoo.org/docs/testing/

BugLink Documentation, Release 0.9

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/mercurial.rst,
line 77.)

22 Chapter 7. ToDo List

Index

Symbols
–issueid

hg-commit command line option, 12
hg-push command line option, 12

–remove
hg-link command line option, 11

–revisions
hg-links command line option, 12

E
environment variable

PATH, 15

H
hg-commit command line option

–issueid, 12
hg-link command line option

–remove, 11
ISSUE_ID, 11
REVSET, 11

hg-links command line option
–revisions, 12

hg-push command line option
–issueid, 12

hg-unlink command line option
ISSUE_ID, 12

I
ISSUE_ID

hg-link command line option, 11
hg-unlink command line option, 12

P
PATH, 15

R
REVSET

hg-link command line option, 11

23

	QuickStart
	Setup
	Support call arrives
	Issue get worked at
	Issue get tested
	New release is made

	Installation
	Client-side extension
	Server-side extension
	Web Interface

	Mercurial Extension
	Client side
	Server side

	Web interface
	Introduction
	Dependencies

	Frequently Asked Questions
	Why not using the commit message ?
	Do I need the server-side stuff ?
	Why not storing the bug state ?
	How do I import all my issues as a batch ?

	For Developpers
	Write tests
	Unit-tests
	Flask-tests
	Upgrade the DB Schema

	ToDo List

