

Welcome to BugLink’s documentation!

BugLink is a Mercurial [http://selenic.com/mercurial] extension that helps link changesets with
Issue IDs.

The final goal is to be able to ask the list of issue being tackled
between two changesets.

BugLink is composed of three components:

	client-side extension

	server-side extension

	web interface

The typical workflow is as follow:

	A developper is working on an issue on his computer where the
client-side extension is enabled, during developement, he indicates
the issue ID he is working on.

	The developper reached a milestone and decides to push his progress
to the server. During the push operation, the information about the
issue(s) being worked-on is transfered to the server.

	The server upon reception of the information updates the database
with the changesets and their corresponding issue ID.

	Management heard some progress have been made toward the next
release, they point their web-browser to the local web shop, and
smile as they see that three more issues have been worked at since
the last time they looked at it.

[image: Workflow illustration]BugLink workflow

The developpers push to the server which updates the database, and
management access the database through a web interface

	QuickStart
	Setup

	Support call arrives

	Issue get worked at

	Issue get tested

	New release is made

	Installation
	Client-side extension

	Server-side extension

	Web Interface

	Mercurial Extension
	Client side

	Server side

	Web interface
	Introduction

	Dependencies

	Frequently Asked Questions
	Why not using the commit message ?

	Do I need the server-side stuff ?

	Why not storing the bug state ?

	How do I import all my issues as a batch ?

	For Developpers
	Write tests

	Unit-tests

	Flask-tests

	Upgrade the DB Schema

	ToDo List

QuickStart

Setup

	Alice

	is the developer of the company.

	Bob

	cares of the support calls.

	Carol

	watch over the quality of the product.

	Dave

	is the manager.

Support call arrives

Bob, receive a phone call from an polite customer not happy about
the greenish colour of the main button, and asks if it could be red.

Bob tries to reproduce the issue, realizes that the red button would
better fit in the design of the product, and opens issue256 in the
company’s ticketing system, which cares of triggering Alice.

Issue get worked at

Alice receive a mail notifying her about issue256, reads it
carrefully, and begins coding.

Once done, Alice indicates to Mercurial that the commit just done
belongs to issue256:

$ hg commit -m "Make the button red"
$ hg link tip issue256
Associating 42685d8fcc0f with issue256
$

Alice checks the local associations out of curiosity:

$ hg links
issue256
$

That done, Alice push her modification to the server:

$ hg push https://hg.company.com/
pushing to https://hg.company.com/
searching for changes
remote: adding changesets
remote: adding manifests
remote: adding file changes
remote: added 1 changesets with 1 changes to 1 files
Remote accepted 1 links.
Those will be removed from the local storage
$

Issue get tested

Alice then release a test build for Carol, and set the status of
issue256 to test.

Carol get notified from the ticketing system that issue256 waits for
her approval and test it, satisfied from the red button, she set the
issue status to resolved, and notifies Dave that a new issue has
been solved, and that it might be time to cut a new release.

New release is made

Carol and Dave together anayse the list of solved issue since
the last release by requesting it to the local web server:

[image: Graph of issues solved since the last release]
In this case, Carol knows well this issue has been solved, but she
can check it again with the ticketing system, and then Dave can make
the decision to release a new version.

Installation

Client-side extension

This is the most common setup for this extension, being enabled on the
client-side at the developer desk to allow him to indicate alongside
with his changeset on which issue he is busy.

This is nothing fancier than enabling a general mercurial
extension [http://mercurial.selenic.com/wiki/UsingExtensions]. No weird dependencies are needed, as the comunication with
the database is done from the server-side.

After cloning the BugLink repository, the following lines have to be
added to your user specific mercurial configuration file [http://www.selenic.com/mercurial/hgrc.5.html]
(Mercurial.ini on windows or .hgrc):

[extensions]
buglink = path/to/buglink/client/

Server-side extension

This one has to be enabled on each repository that may receive
changesets from developpers. This extension will care about updating
the database with the issue ID the developpers have been busy
with. This can be a server-wide setting, a repository specific
setting, or a setting reserved for the web instance of mercurial
(hgweb.conf for instance).

This extension needs to talk to the database, and thus has dependency
on SQLAlchemy [http://sqlalchemy.org].

As any other mercurial extensions, it is enabled through modification
of the mercurial configuration file [http://www.selenic.com/mercurial/hgrc.5.html] (Mercurial.ini on windows
or .hgrc), where the following lines have to be added:

[extensions]
buglink_srv = path/to/buglink/server/

The location of the database has to be configured in the same
configuration file. This has to be a sqlalchemy database url. For
instance:

[buglink]
db_uri = sqlite:////tmp/dblink.db

Web Interface

We are talking here about a WSGI application [http://www.wsgi.org]. there are plenty of
guide on the internet on how to attach a WSGI application to your
favorite web server. It looks like the last trendy one is to have a
Gunicorn [http://gunicorn.org/] instance behind a nginx [http://nginx.org/en/] proxy. Apache and mod_wsgi also
works fine.

The web interface has a bit more dependencies as the rest, as it needs
to talk to the database, and deliver content for a web browser. The
needed dependencies can be found in srv-requirements.txt. This
file follows the pip requirements file format [http://www.pip-installer.org/en/latest/requirement-format.html]. So that within your
virtualenv you just need to run:

pip -r srv-requirements.txt

The web app is located in the following file:

server/web.py

Flask having its own integrated web server, it can be tested as
follow (the optional parameter is the name of the configuration file):

python server/web.py [config.yaml]

A sample WSGI script is given in server/buglink.wsgi. This
file is reproduced here:

Configuration

The web server is configured through the usage of a configuration
dictionary. This one can be given in the WSGI script or through a
config file in the YAML [http://www.yaml.org/] format.

the following configuration values are understood:

	DB_URL

	This is the url to the database in the sqlalchemy format. For
instance:

sqlite:////var/buglink/buglink.db

	SECRET_KEY

	This is a random string used to encrypt the cookies used by the web
application.

	links

	This configuration key is used to configure cross links between
buglink and other web instances (for instance the mercurial server,
or the bug tracker.)

The links key support the following sub-keys:

	repository

	This is used to link a repository name to a web page, usually,
the mercurial server.

	changeset

	This configuration key is used to link a changeset to a web-page
usually on the mercurial server.

	issue

	This is used to link an issue to a web page (the bug tracker for
instance).

All the sub-keys follow the same format. They are a list of
settings, each setting can have three sub-keys: re, default
and url. At least the url sub-key should be filled to
generate a link.

The following mechanism is used for each setting of each sub-keys
in the order they are defined, later values being only used if the
previous one did not matched:

	The value (repository path, changeset hash, or issue
reference) is matched against the content of the re value.

	If the regular expression matches, we go on to the next step,
else the next setting is tried.

	A dictionary is created with each matched variable of the regular
expression (in the form (?P<id>...)). Optional
variables get their values from the default setting. This
setting is a dictionary associating variable name to
default-values.

	The url is generated from the content of the url setting,
by replacing each format string (in the form %(name)s)
with its matched value during the regular expression
matching.

As an example, tortoisehg, a project stored on Bitbucket.org
should use the following setting:

links:
 repository:
 -
 url: https://bitbucket.org/tortoisehg/%(path)s/overview
 changeset:
 -
 url: https://bitbucket.org/tortoisehg/%(path)s/changeset/%(hash)s
 issue:
 -
 re: #(?P<id>\d+)
 url: https://bitbucket.org/tortoisehg/%(path)s/issue/%(id)s

Mercurial Extension

Client side

Action upon push

All known links are also pushed to the remote repository. If the
operation succeeded, the extension can assume its links made it to the
database.

Added commands

Those commands acts on the local issue cache. This one will be
transfered to the remote side upon push. the local cache can also be
augmented from a remote side if two developpers having the client-side
extension enabled push/pull to each
other. In such a case, the issues referenced on one side will be
duplicated on the other side. And the first one to push to a
repository with the server-side extension will publish the full list
to the database.

link

This command link a changeset with an issue ID.

	
REVSET

	This indicate the revisions on which the operation should be done.

	
ISSUE_ID

	This is the name of the issue to be associated.

	
--remove

	This tell Mercurial not to add a new correspondance, but to remove
the one

Note

Only one of --remove or ISSUE_ID should
be given at the same time. See hg unlink to
remove a issue from the local cache.

unlink

This command, well, unlink a (or multiple) issue. The result will be
that the unlinked issue will not be referenced any more in the local
cache.

	
ISSUE_ID

	This is the reference to the issue to be unlinked

links

This command takes two revisions as parameters (defaulting to -1
and tip) and output the issues that have been worked on between
them.

	
--revisions

	This option output the revisions where the issues have been worked
on together with the issue ID itself.

Todo

Add a --graph option

Aded options

hg commit

	
--issueid

	To specify an issue ID for the to-be-commited changeset.

hg push

	
--issueid

	To specify an issue ID for the to-be-pushed changesets.

Server side

Warning

Due to dependencies on (among others) sqlalchemy, this
extension cannot works on Windows with a packaged version
of Mercurial. Those one having only access to the
pre-packaged dependencies.

The server-side extension will mostly reacts on push from a developer
and update the database with the pushed information.

Action upon pushkey

Upon a push, initiated from the client-side, a set of changeset
will be transmitted from the client side. A client also using the
buglink extension will also try to push all its known issue IDs. This
will be pushed using mercurial pushkey protocol.

The extension will be pushed a set of key from the client. Each key
correspond to a changeset, and the corresponding value is a free
string indicating the corresponding issue ID.

For each received key, the server will optionaly parse the free
string, and update the database about the link between the changeset
and the issueID.

For each pushed changeset, a new entry will be made in the database
with the corresponding repository and the parent(s) revision(s).

Added commands

createdb

This will initialise an empty database to the last schema version.

updatedb

This will update an old database schema so that the updated server-side
extension can continue to work on the same database. This operation
is safe to run multiple time. If the database is up-to-date, this
operation will simply do nothing.

It is also possible to downgrade the database to an previous schema
version (For instance if stuck by a show-stopper bug in the last
version). No command is provided for this operation, but the right
mechanism is included as part of the sqlalchemy-migrate versionning.

Configuration

This extension can be configured through the mercurial config file.

The following configuration values have effects:

	buglink.db_url

	(default to sqlite:///dblink.db) This is a SQLAlchemy database
url to the database which should receive the issue links.

	buglink.strip

	(also notify.strip, or 3) This is the number of directory
to be stripped to the base of the repository path for reference
into the database.

Web interface

Introduction

While the mercurial interface provide an append only interface to the
database, the web one provides a read and modify interface to it.

Dependencies

GraphViz [http://www.graphviz.org/] needs to be installed on the server and dot be in
the PATH.

Frequently Asked Questions

Why not using the commit message ?

Commit messages in mercurial are written once in a changeset and
cannot be changed again without altering the whole history based their
corresponding changeset.

Humans are not errors-prone, and it (sometimes) happen that someone
forget to indicate which issue ID correspond to the changeset he just
committed, or even enter a wrong ID, (you know, just interverting two
numbers : 2658 and 2568 ...). As those errors cannot be easily
corrected if stored in the commit message, we prefer to store this
information at another place. This way, it is still possible to change
the issue ID referenced by a changeset commited three years ago.

Do I need the server-side stuff ?

If you don’t care about the web interface, you can only enable the
extension on your computer and use the locally stored links between
changeset and issue ID as a reference. the command hg links
can be used for this purpose.

Todo

Add a graph view on the command line

Why not storing the bug state ?

That’s the job of the bug tracker, we’re only here to make the missing
link between him and changesets. Furthermore, developers (for who this
tools is written) don’t know if the bug has indeed been fixed until
Q&A validates it.

How do I import all my issues as a batch ?

Say, like Mercurial [http://selenic.com/hg/], you used to store your issue number in your
commit message. You can import them as follow (Or if you don’t
understand it, give it to your system administrator):

for i in `hg log --template '{rev}\n'`; do ref=`hg log -r $i --template '{desc}\n' | perl -ne 's/.*(issue\d+).*/$1/ && print'`; if ! [-z "$ref"]; then echo $i $ref >> issuelist;fi; done;

And then import the generated list via the hg
debugimportlink command:

hg debugimportlink issuelist

For Developpers

Write tests

Client-side extension

The client-side extension uses Mercurial’s own test framework to be
tested. This means that mercurial has to be present as a source
package for tests to be run.

The recommended setup is to clone mercurial repository next to the
buglink one.

Then To run the tests, simply run:

$ make tests

within the buglink root directory (probably buglink). If you
added some, and want to update the corresponding output, call the
tests as follow:

$ make tests TESTFLAGS=-i

This way, you will be asked if the given output match your
expectations, and if you want to include it in the test-case.

Server-side extension

Database migration

database migration, using sqlalchemy-migrate [http://code.google.com/p/sqlalchemy-migrate/] can be tested with
their own tools, just run:

migrate test sqlite:////path/to/db .

in the server/dbmigrate directory. (Don’t forget to run it
only on test-databases).

Mercurial hook

Todo

Write tests

Web Server

Unit-tests

Some parts of the web-server can be independently tested. In those
cases, write teste into the tests/server directory.

To run those tests use the following command line in the
buglink directory:

$ PYTHONPATH=. python tests/server/runtests.py

Flask-tests

Todo

Write flask tests as described under
http://flask.pocoo.org/docs/testing/.

Upgrade the DB Schema

The DB is versionned, which means that each upgrade should follow a
specific procedure. This one is described there.

	Write a new script under server/dbmigrate/versions

	Test the upgrade procedure with sqlalchemy-migrate [http://code.google.com/p/sqlalchemy-migrate/]

	Upgrade the DB model version and (maybe) dscription in
server/models.py.

	Optionnaly integrate your change in the view.

A tentative is made to keep the schema decribed in the following figure:

[image: DB schema]Database schema version 5

ToDo List

Note

This list is autogenerated from the doc itself.

Todo

Write tests

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/dev.rst, line 47.)

Todo

Write flask tests as described under
http://flask.pocoo.org/docs/testing/.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/dev.rst, line 66.)

Todo

Add a graph view on the command line

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/faq.rst, line 30.)

Todo

Add a --graph option

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/buglink/checkouts/latest/docs/mercurial.rst, line 77.)

Index

 Symbols
 | E
 | H
 | I
 | P
 | R

Symbols

 	
 	
 --issueid

 	hg-commit command line option

 	hg-push command line option

 	
 	
 --remove

 	hg-link command line option

 	
 --revisions

 	hg-links command line option

E

 	
 	
 environment variable

 	PATH

H

 	
 	
 hg-commit command line option

 	--issueid

 	
 hg-link command line option

 	--remove

 	ISSUE_ID

 	REVSET

 	
 	
 hg-links command line option

 	--revisions

 	
 hg-push command line option

 	--issueid

 	
 hg-unlink command line option

 	ISSUE_ID

I

 	
 	
 ISSUE_ID

 	hg-link command line option

 	hg-unlink command line option

P

 	
 	PATH

R

 	
 	
 REVSET

 	hg-link command line option

 _static/comment-close.png

_images/issue256.png
000 BugLink
[+ [@ http://buglink.comp - ¢ | (Q- Google)»

e M Apple Yahoo! Google Maps YouTube »
BugLink
Product

ARILS

_static/minus.png

_static/comment-bright.png

_static/comment.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to BugLink's documentation!

 		QuickStart

 		Setup

 		Support call arrives

 		Issue get worked at

 		Issue get tested

 		New release is made

 		Installation

 		Client-side extension

 		Server-side extension

 		Web Interface

 		Configuration

 		Mercurial Extension

 		Client side

 		Action upon push

 		Added commands

 		Aded options

 		Server side

 		Action upon pushkey

 		Added commands

 		Configuration

 		Web interface

 		Introduction

 		Dependencies

 		Frequently Asked Questions

 		Why not using the commit message ?

 		Do I need the server-side stuff ?

 		Why not storing the bug state ?

 		How do I import all my issues as a batch ?

 		For Developpers

 		Write tests

 		Client-side extension

 		Server-side extension

 		Web Server

 		Unit-tests

 		Flask-tests

 		Upgrade the DB Schema

 		ToDo List

_static/ajax-loader.gif

_static/down-pressed.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/down.png

_static/issue256.png
000 BugLink
[+ [@ http://buglink.comp - ¢ | (Q- Google)»

e M Apple Yahoo! Google Maps YouTube »
BugLink
Product

ARILS

